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Abstract. Many studies have examined how fuels, topography, climate, and fire weather influence
fire severity. Less is known about how different forest management practices influence fire severity in
multi-owner landscapes, despite costly and controversial suppression of wildfires that do not acknowl-
edge ownership boundaries. In 2013, the Douglas Complex burned over 19,000 ha of Oregon & Cali-
fornia Railroad (O&C) lands in Southwestern Oregon, USA. O&C lands are composed of a
checkerboard of private industrial and federal forestland (Bureau of Land Management, BLM) with
contrasting management objectives, providing a unique experimental landscape to understand how
different management practices influence wildfire severity. Leveraging Landsat based estimates of fire
severity (Relative differenced Normalized Burn Ratio, RdNBR) and geospatial data on fire progres-
sion, weather, topography, pre-fire forest conditions, and land ownership, we asked (1) what is the rela-
tive importance of different variables driving fire severity, and (2) is intensive plantation forestry
associated with higher fire severity? Using Random Forest ensemble machine learning, we found daily
fire weather was the most important predictor of fire severity, followed by stand age and ownership,
followed by topographic features. Estimates of pre-fire forest biomass were not an important predictor
of fire severity. Adjusting for all other predictor variables in a general least squares model incorporat-
ing spatial autocorrelation, mean predicted RdNBRwas higher on private industrial forests (RdNBR
521.85 � 18.67 [mean � SE]) vs. BLM forests (398.87 � 18.23) with a much greater proportion of
older forests. Our findings suggest intensive plantation forestry characterized by young forests and
spatially homogenized fuels, rather than pre-fire biomass, were significant drivers of wildfire severity.
This has implications for perceptions of wildfire risk, shared fire management responsibilities, and
developing fire resilience for multiple objectives in multi-owner landscapes.

Key words: fire severity; forest management; Landsat; multi-owner landscape; Oregon; plantation forestry;
RdNBR.

INTRODUCTION

The wildfire environment has become increasingly compli-

cated, due to the unanticipated consequences of historical

forest management and fire exclusion (Weaver 1943, Hess-

burg et al. 2005, Ful�e et al. 2009, Naficy et al. 2010, Mer-

schel et al. 2014), an increasingly populated wildland urban

interface (Haas et al. 2013), and a rapidly changing climate

(Westerling and Bryant 2008, Littell et al. 2009, Jolly et al.

2015). These factors are resulting in more intense fire behav-

ior and increasingly negative ecological and social conse-

quences (Williams 2013, Stephens et al. 2014). Fuels

reduction via mechanical thinning and prescribed burning

have been the dominant land management response for miti-

gating these conditions (Agee and Skinner 2005, Stephens

et al. 2012), although there is an increasing recognition of

the need to manage wildfires more holistically to meet social

and ecological objectives. (North et al. 2015a, b). However,

overcoming these challenges is inhibited by numerous dis-

agreements in the scientific literature regarding historical

fire regimes and appropriate policies and management of

contemporary fire-prone forests (Hurteau et al. 2008, Han-

son et al. 2009, Spies et al. 2010, Campbell et al. 2012,

Odion et al. 2014, Collins et al. 2015, Stevens et al. 2016).

These factors and others have resulted in a nearly intractable

socioecological problem (Fischer et al. 2016); one that is

compounded by the fact that many fire-prone landscapes

consist of multiple owners and administrative jurisdictions

with varying and often conflicting land management

objectives.

Developing and prioritizing landscape fire management

activities (i.e., thinning, prescribed fire, wildland fire use,

and fire suppression) across jurisdictional and ownership

boundaries requires landscape-scale assessments of the fac-

tors driving fire severity (i.e., the fire behavior triangle of

fuels, topography, and weather). Researchers have focused

on the influence of bottom-up drivers such as topography

(Dillon et al. 2011, Prichard and Kennedy 2014, Birch et al.

2015), and fuels via fuel reduction effects (Agee and Skinner

2005, Raymond and Peterson 2005, Safford et al. 2009,

Prichard and Kennedy 2014, Ziegler et al. 2017), as well as

the top-down influence of weather on fire severity (Birch

et al. 2015, Estes et al. 2017). They have also focused more

broadly on how fire severity varies with vegetation and for-

est type (Birch et al. 2015, Steel et al. 2015, Reilly et al.

2017) and climate (Miller et al. 2012, Abatzoglou et al.

2017). While there is substantial value in further describing

how components of the fire behavior triangle influence fire

severity, we believe there is a need to account for these

known influences on fire behavior and effects to understand
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how different management regimes interact with these con-

trolling factors, so appropriate landscape management

strategies can be developed to support social-ecological

resilience in fire-prone landscapes (Spies et al. 2014,

Schoennagel et al. 2017).

Understanding the relationships between forest manage-

ment regimes and fire severity is especially important in mul-

ti-owner landscapes, where wildfire governance systems

concerned about short-term property loss and public safety

can reinforce perceptions of wildfire risk and hazard, result-

ing in individual property owners being less likely to make

management decisions that reduce long-term risk exposure

(McCaffrey 2004, Fischer et al. 2016). This is particularly

important in landscapes that include intensive plantation

forestry, a common and rapidly expanding component of

forest landscapes at regional, national, and global scales

(Cohen et al. 1995, Landram 1996, Del Lungo et al. 2001,

Rudel 2009, FAO 2010, Nahuelhual et al. 2012). Research-

ers have hypothesized that intensive forest management

reduces fire behavior and effects (Hirsch et al. 2001,

Rodr�ıguez y Silva et al. 2014). However empirical results

have been mixed, with evidence that intensive forest manage-

ment can either reduce (Lyons-Tinsley and Peterson 2012,

Prichard and Kennedy 2014) or increase fire severity (Odion

et al. 2004, Thompson et al. 2007), and that reduced levels

of forest legal protection (a proxy for more active manage-

ment) have been associated with increased fire severity in the

western U.S. (Bradley et al. 2016). These conflicting results

further complicate the development of fire governance and

management strategies for increasing social-ecological resili-

ence in a rapidly changing fire environment.

The quality, spatial scale, and spatial correlation of

explanatory data (i.e., weather, topography, and fuels) are

major limitations to empirically understanding how forest

management activities influence fire severity across land-

scapes. Regional studies of fire severity often rely on spa-

tially coarse climatic data (Dillon et al. 2011, Miller et al.

2012, Cansler and McKenzie 2014, Kane et al. 2015, Harvey

et al. 2016, Meigs et al. 2016, Reilly et al. 2017), rather than

local fire weather that can be a significant driver of fire area

and severity (Flannigan et al. 1988, Bradstock et al. 2010,

Estes et al. 2017). This is in part because finer-scale fire

weather variables are often incomplete across the large spa-

tial and temporal domains of interest. Additionally, regional

studies often occur in areas with large elevation relief result-

ing in strong climatic gradients, while more local studies

often have less elevation relief and potentially weaker cli-

matic gradients. Perhaps more importantly, the geographic

distribution of different ownership types and management

regimes can confound quantification of the drivers of fire

severity. For example, high elevation forests in the Pacific

Northwest region of the United States are largely unman-

aged as National Parks and congressionally designated

wilderness areas, compared to intensively managed forests

at lower elevations, resulting in differences in topography,

weather, climate, forest composition, productivity, and his-

torical fire regimes between ownerships and management

regimes. While landscape studies of fire severity and man-

agement activities have used a variety of statistical tech-

niques to account for spatial correlation of both response

and predictor variables (Thompson et al. 2007, Prichard

and Kennedy 2014, Meigs et al. 2016), these techniques may

not overcome fundamental differences in response and pre-

dictor variables between management and/or ownership

types.

In this study, we examined the drivers of fire severity

within one large (~20,000 ha) wildfire complex that burned

within the Klamath Mountains, an ecoregion with a mild

Mediterranean climate of hot dry summers and wet winters

in southwestern Oregon, USA. The fire burned within a

checkerboard landscape of federal and private industrial for-

estry ownership. This spatial pattern of contrasting owner-

ship and management regimes provided a unique landscape

experiment where we quantified the effects of management

regimes after accounting for variation in well-known drivers

of fire behavior and effects. Leveraging geospatial data on

fire severity, fire progression, fire weather, topography, pre-

fire forest conditions, and past management activities, we

asked two questions: (1) What is the relative importance of

different variables driving fire severity? And (2) is intensive

plantation forestry associated with higher fire severity?

METHODS

Study site

In the summer of 2013, the Douglas Complex burned

19,760 ha of forestland in southwestern Oregon, USA

(Fig. 1). Starting from multiple lightning ignitions, individ-

ual small fires coalesced into two large fires (Dads Creek

and Rabbit Mountain) managed as the Douglas Complex.

FIG. 1. Location of and fire severity within the Douglas Com-
plex in Oregon, USA. Fire severity quantified using the Relative dif-
ferenced Normalized Burn Ratio (RdNBR).
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This fire burned within the Oregon and California Railroad

Lands (hereafter O&C Lands). O&C Lands resulted from

19th century land grants that ceded every other square mile

(259 ha) of federally held land to railroad companies along

planned routes in Oregon and California to incentivize rail-

road development and homesteading settlement. The Ore-

gon and California Railroad Company received a total of

1.5 million ha, but failing to meet contractual obligations,

1.1 million ha were transferred back to federal ownership

under the Chamberlain-Ferris Revestment Act of 1916. The

USDI Bureau of Land Management (BLM) is currently

required to manage these lands for sustainable timber pro-

duction, watershed protection, recreation, and wildlife habi-

tat. Private industrial forestlands dominate the remaining

O&C landscape, and are managed intensively as native tree

plantations (primarily Douglas-fir, Pseudotsuga menziesii

var. menziesii) for timber production typically on 30–50 yr

harvest rotations. The Douglas Complex fires burned

10,201.64 ha of forests managed by the BLM, 9,429.66 ha

of private industrial forests, and 129.33 ha managed by the

Oregon Department of Forestry (ODF).

The Douglas Complex burned at elevations ranging from

213 to 1,188 m in mountainous terrain of the Klamath

Mountains Ecoregion. Climate in the ecoregion is character-

ized by hot dry summers and wet winters, with greater win-

ter precipitation at higher elevations and western portions of

the ecoregion. Vegetation types within the region include

oak woodlands and mixed hardwood/evergreen forests at

low to mid elevations, transitioning into mixed-conifer for-

ests at higher elevations (Franklin and Dyrness 1988). For-

ests within the Douglas Complex are dominated by

Douglas-fir, ponderosa pine (Pinus ponderosa), and white fir

(Abies concolor). Other conifer tree species present include

incense cedar (Calocedrus decurrens), sugar pine (Pinus lam-

bertiana), Jeffery pine (Pinus jefferyi), and knobcone pine

(Pinus attenuata). Hardwood species include Oregon white

oak (Quercus garryana), big-leaf maple (Acer macrophyl-

lum), Pacific dogwood (Cornus nuttallii), Pacific madrone

(Arbutus menziesii), canyon live oak (Quercus chrysolepis),

California black oak (Quercus kelloggii), golden chinkapin

(Chrysolepis chrysophylla), and tanoak (Lithocarpus densi-

flourus). Douglas-fir is the primary commercial timber spe-

cies managed on private and public lands, while fire

exclusion and historical management practices have

expanded the density and dominance of Douglas-fir across

much of the ecoregion (Franklin and Johnson 2012,

Sensenig et al. 2013).

Data sources

We analyzed fire severity in relation to eight predictor

variables representing topography, weather, forest owner-

ship, forest age, and pre-fire forest biomass (Fig. 2). We

quantified fire severity using the Relative differenced Nor-

malized Burn Ratio (RdNBR), a satellite-imagery-based

metric of pre- to post-fire change. Cloud-free pre-fire (3 July

2013) and post-fire (7 July 2014) images came from the

Landsat 8 Operational Land Imager. Normalized Burn

Ratio (NBR), which combines near-infrared and mid-infra-

red bands of Landsat imagery, was calculated for pre- and

post-fire images. Differenced Normalized Burn Ratio

(dNBR) was calculated by subtracting NBRpost-fire from

NBRpre-fire values, and RdNBR was then calculated follow-

ing Miller et al. (2009), where:

RdNBR ¼
dNBR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

AbsoluteValue ðNBRpre�fire=1; 000Þ
p . (1)

We chose RdNBR over dNBR as our fire severity metric

because RdNBR removes, at least in part, the biasing effect

of pre-fire conditions, improving assessment of burn severity

across heterogeneous vegetation and variable pre-fire distur-

bances (Miller and Thode 2007). We used the continuous

RdNBR values as our response variable for fire severity at a

30-m resolution.

Elevation and other topographic variables were derived

from the National Elevation Dataset 30 m digital elevation

model (Gesch et al. 2002). We generated 30-m rasters of ele-

vation (m), slope (%), topographic position index (TPI), and

heat load (MJ�cm�2�yr�1). TPI was calculated as the differ-

ence between elevation in a given cell and mean elevation of

cells within an annulus around that cell, calculated at fine

and coarse scales (TPI fine and TPI coarse) with 150–300 m

and 1,850–2,000 m annuli, respectively. We also originally

considered TPI at a moderate spatial scale (850–1,000 m

annuli), but rejected it as an predictor variable due to its

high correlation to TPI fine (r = 0.64) and TPI course

(r = 0.84). TPI course had strong linear correlations with

elevation (r = 0.83) and TPI fine (r = 0.46), so it was also

removed to avoid multi-collinearity in statistical analyses.

Heat load was calculated by least-squares multiple regres-

sion using trigonometric functions of slope, aspect, and lati-

tude following McCune and Keon (2002).

Rasters of daily fire weather conditions were generated by

extrapolating weather station data to a daily fire progression

map. We obtained hourly weather data for the duration of

active fire spread (7 July–20 August 2013) from the Calvert

Peak Remote Automatic Weather Station (NWS ID 352919;

42°46040″ N 123°43046″ W, 1,165 m), approximately 30 km

west-southwest of the Douglas Complex. We then subset

each 24-h period of weather data to the daily burn period

(10:00 to 18:00) when fire behavior is typically most active.

We then calculated the daily burn period minimum wind

speed (km/h), maximum temperature (°C), and minimum

relative humidity (%). For each daily burn period we also

calculated the mean energy release component (ERC),

spread component (SC), and burning index (BI) using

FireFamilyPlus Version 4.1 (Bradshaw and McCormick

2000). ERC is an index of fuel dryness related to the maxi-

mum energy release at the flaming front of a fire, as mea-

sured from temperature, relative humidity, and moisture of

1–1,000 h dead fuels. SC is a rating of the forward rate of

spread of a head fire, and is calculated from wind speed,

slope, and moisture of live fine and woody fuels (Bradshaw

et al. 1983). BI is proportional to the flame length at the

head of a fire (Bradshaw et al. 1983), calculated using ERC

and SC, thus incorporating wind speed and providing more

information than ERC and SC individually. ERC, SC, and

BI vary by broadly categorized fuel types. We calculated

ERC, SC, and BI using the National Fire Danger Rating

System Fuel Model G, which represents short-needled

Xxxxx 2018 PLANTATION FORESTRY INCREASES SEVERITY 3



conifer stands with heavy dead fuel loads. Daily fire weather

variables were then spatially extrapolated to the daily area

burned based on daily fire progression geospatial data cap-

tured during the fire (GeoMAC 2013).

Forest ownership was derived from geospatial data repre-

senting fee land title and ownership in Oregon (Oregon Spa-

tial Data Library 2015). We grouped ODF and BLM lands

as a single ownership type, because ODF lands were a small

component of the area burned and have management objec-

tives closer to federal vs. private industrial forests (Spies

et al. 2007). Pre-fire forest conditions were represented with

30-m rasters of live biomass (Mg/ha) and stand age, derived

from a regional 2012 map of forest composition and struc-

tural attributes developed for the Northwest Forest Plan

Monitoring Program (Ohmann et al. 2012, Davis et al.

2015). These maps were developed using the gradient nearest

neighbor method (GNN), relating multivariate response

variables of forest composition and structure attributes from

approximately 17,000 federal forest inventory plots to grid-

ded predictor variables (satellite imagery, topography, cli-

mate, etc.) using canonical correspondence analysis and

nearest neighbor imputation (Ohmann and Gregory 2002).

Biomass values are directly from the GNN maps, while we

quantified forest age as a two-step process. First, we calcu-

lated pre-fire forest age in 2013 based on years since each

pixel was disturbed in the Landsat time series (1985–2014)

from a regional disturbance map generated for the North-

west Forest Plan Monitoring Program using the LandTrendr

segmentation algorithm (Kennedy et al. 2010, Ohmann

et al. 2012, Davis et al. 2015). Second, for pixels where no

FIG. 2. Maps of response and predictor variables for Douglas Complex. TPI, topographic position index.
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disturbance had occurred within the Landsat time series, we

amended forest age derived from the Landsat time series

using dominant and codominant tree age from the GNN

maps.

Statistical analyses

All statistical analyses were conducted in the R statisti-

cal environment version 3.3.3 (R Development Core Team

2017). We sampled the burned landscape using a spatially

constrained stratified random design, from which response

and predictor variables were extracted for analysis. Sample

points had to be at least 200 m apart to minimize short

distance spatial autocorrelation of response and predictor

variables. Our choice of minimum inter-plot distance to

reduce spatial autocorrelation was confounded by the

dominance of long distance spatial autocorrelation driven

by large ownership patches, which would have greatly

reduced sample size and potentially eliminated finer scale

variability in the sample. For these reasons we based our

200 m minimum inter-plot distance in part on prior

research (Kane et al. 2015), that found residual spatial

autocorrelation in Random Forest models of fire severity

in the Rim Fire of 2013 in the California Sierra Nevada

was greatly diminished when inter-plot distances were at

least 180 m apart. Additionally, point locations had to be

at least 100 m away from ownership boundaries to mini-

mize inter-ownership edge effects. Within these spatial

constraints, sample points were located in a stratified ran-

dom design, with the number of points proportional to

area of ownership within the fire perimeter, resulting in

571 and 519 points located in BLM and private industrial

forests, respectively. Mean response and predictor variables

were extracted within a 90 9 90 m plot (e.g., 3 9 3 pixels)

centered on each sample point location to minimize the

effects of potential georeferencing errors across data layers

and maintain a plot size comparable to the original inven-

tory plots used as source data in GNN maps as recom-

mended by Bell et al. (2015).

We observed high correlation between fire weather vari-

ables (mean absolute r = 0.59), likely due to their temporal

autocorrelation during the fire event, which could result in

multi-collinearity in statistical analyses. Therefore, we evalu-

ated the relationships between each fire weather variable

and daily mean fire severity, selecting a single fire weather

variable as a predictor variable in subsequent analyses. We

based our variable selection on visual relationships to daily

RdNBR, variance explained in regressions of RdNBR and

fire weather variables, and Akaike information criterion

(AIC) scores of regressions of RdNBR and fire weather vari-

ables following Burnham and Anderson (2002).

The study’s strength rests in part on the implicit assump-

tion that the checkerboard spatial allocation of ownership

types is a landscape scale experiment, where predictor vari-

ables directly modified by management activities (e.g., pre-

fire biomass and forest age) are different between ownership

types, but fire weather and topographic variables are not.

We assessed this assumption by visualizing data distribu-

tions between ownerships using boxplots and violin plots,

and testing if variables were different between ownership

types using Mann–Whitney–Wilcoxon Tests.

To assess the relative importance and relationships

between predictor variables and RdNBR, we used Random

Forest (RF) supervised machine learning algorithm with the

randomForest package (Liaw and Wiener 2002). As applied

in this study, RF selected 1,500 bootstrap samples, each con-

taining two-thirds of the sampled cells. For each sample, RF

generated a regression tree, then randomly selected only

one-third of the predictor variables and chose the best parti-

tion from among those variables. To assess the relative

importance and relationships of predictor variables on

RdNBR across the entire study area and within different

ownerships, separate RF models were developed for all

1,090 sample plots across the entire burned area, as well as

separately for plots on BLM and private industrial lands.

For each of the three RF models, we calculated variable

importance values for each predictor variable as the percent

increase in the mean squared error (MSE) in the predicted

data when values for that predictor were permuted and all

other predictors were left unaltered. In addition to variable

importance values, we determined which predictor variables

should be retained in each RF model using multi-stage vari-

able selection procedures (Genuer et al. 2010). We applied

two-stage variable selection for interpretation to each RF

model using the VSURF package (Genuer et al. 2016).

Final RF models were then run including only the selected

variables. Predictive power of the final RF models were

assessed by calculating the variance explained, which is

equivalent to the coefficient of determination (R2) used with

linear regressions to assess statistical model fit for a given

dataset. Last, we visualized the relationships of individual

predictor variables on RdNBR in the final RF models using

partial dependency plots (Hastie et al. 2001).

Importance values in RF models are not the same as

quantifying the fixed effects of predictor variables, nor is

RF well suited to explicitly test hypotheses or quantify

effects of predictor variables while accounting for other vari-

ables in a model. To test if ownership type increased

RdNBR, we developed a generalized least squares (GLS)

regression model with an exponential spherical spatial corre-

lation structure using the nlme package (Pinheiro et al.

2017). The GLS regression used the distance between sam-

ple locations and the form of the correlation structure to

derive a variance–covariance matrix, which was then used to

solve a weighted OLS regression (Dormann et al. 2007).

Using the same response and predictor data as in the RF

model for the entire Douglas Complex, and a binary predic-

tor variable for ownership type, we developed a GLS model

from which we calculated the fixed effect of ownership on

RdNBR. We then predicted the mean and standard error of

RdNBR by ownership after accounting for the other predic-

tor variables in the GLS model using the AICcmodavg

package (Mazerolle 2017).

RESULTS

Fire weather variables

Regression models of fire weather variables (except maxi-

mum temperature) described a significant proportion of the

variance in daily mean RdNBR (Table 1; Appendix S1:

Fig. S1). SC described the most variance in daily RdNBR,
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had the lowest AIC score, and was most likely to be the best

model of those compared (wi = 0.8250). However, BI

described a comparable amount of the variance in daily

RdNBR (R2 = 0.5815), had a substantial level of empirical

support (DAIC = 3.3816), was the second most likely model

given the data (wi = 0.1521), and contained additional

metrics that influence fire behavior (influence of temperature,

relative humidity, and drought on live and dead fuels) not

incorporated in SC. For these reasons, we choose to use BI as

the single fire weather variable in subsequent analyses,

acknowledging that it may describe slightly less variation in

RdNBR than SC.

RdNBR and predictor variable differences by ownership

The majority of predictor variables were not statistically

different by ownership, as expected given the spatial distri-

bution of ownership. Based on Mann-Whitney-Wilcoxon

tests, biomass and stand age were lower on private industrial

vs. BLM managed lands (Table 2; Appendix S1: Fig. S2).

TPI fine, heat load, slope, and BI were not different between

ownership types. Elevation was different between ownership

types, but only 44 m higher on BLM land across a range of

875 m for all sample plots. Mean RdNBR was higher

(536.56 vs. 408.75) on private industrial vs. BLM lands.

Random forest variable importance values and partial

dependency plots

Two-stage variable selection procedures retained seven,

five, and six predictor variables in the final RF models for

the entire Douglas Complex, BLM, and private forests,

respectively (Fig. 3). Across the entire Douglas Complex, BI

was the most important predictor variable of RdNBR

(increasing MSE by 138.4%), while BI was also the most

importance variable separately for BLM (105.4%) and pri-

vate forests (83.2%). Age and ownership were the next most

TABLE 1. Regression models of daily mean Relative differenced
Normalized Burn Ratio (RdNBR) in relation to daily burn
period fire weather variables.

Models R2 AIC DAIC L(gi|x) wi

RdNBR = SC2 0.6532 210.0324 0.0000 1.0000 0.8250

RdNBR = BI2 0.5815 213.4140 3.3816 0.1844 0.1521

RdNBR = min
wind speed2

0.4542 218.1948 8.1624 0.0169 0.0139

RdNBR = log
(min relative
RH)

0.3800 220.4903 10.4579 0.0054 0.0044

RdNBR = ERC2 0.3675 220.8497 10.8173 0.0045 0.0037

RdNBR = max
wind speed2

0.2179 224.6700 14.6376 0.0007 0.0005

RdNBR = max
temperature2

0.1069 227.0592 17.0268 0.0002 0.0002

RdNBR = null
model

0.0000 228.1855 18.1531 0.0001 0.0001

Notes: R2, adjusted R squared; AICc, Akaike information crite-
rion corrected for sample size; DAICc, AICc differences; L(gi|x),
likelihood of a model given the data; wi, Akaike weights; SC, spread
component; BI, burn index; RH, relative humidity; ERC, energy
release component.

TABLE 2. RdNBR (mean with SE in parentheses) and predictor variables on sampled plots for Bureau of Land Management (BLM) vs.
private industrial (PI) ownership.

Variable BLM PI w P

RdNBR 408.75 (298.53) 536.56 (299.88) 111,124 <0.0001

Biomass (Mg/ha) 234.75 (87.24) 163.88 (74.47) 215,166 <0.0001

Age (yr) 108.81 (55.53) 52.18 (36.78) 236,021.5 <0.0001

BI (index) 62.99 (14.16) 63.64 (14.54) 142,575.5 0.2782

Elevation (m) 653.79 (153.48) 609.46 (161.62) 171,200 <0.0001

TPI fine 0.55 (32.51) �1.08 (32.12) 152,275 0.4296

Heat load (MJ�cm�2�yr�1) 0.77 (0.2) 0.77 (0.2) 150,363 0.6734

Slope (%) 48.4 (13.4) 47.05 (14.01) 156,435 0.1115

Notes: The w values and associated P values are from Mann–Whitney–Wilcoxon tests. TPI, topographic position index.

FIG. 3. Variable importance plots for predictor variables from Random Forest (RF) models of RdNBR for 1090 sample plots across the
entire Douglas Complex (left panel), 571 plots on Bureau of Land Management (BLM) forests (middle), and 519 plots on private industrial
(PI) forests (right). Solid circles denote variables retained in two-stage variable selection, open circles denote variables removed from the
final RF models during variable selection. BI, burning index; MSE, Mean Squared Error.
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important predictor variables, increasing MSE across the

Douglas Complex by 56.7% and 53.2%, respectively. Age

was the second most important variable in the final RF

model for BLM forests (32%), but was the fourth most

important variable for private forests (18.2%). Pre-fire bio-

mass was the fourth most importance predictor variable in

the RF model of the entire Douglas Complex (33.9%), but

was not retained in the final RF model for BLM forests, and

was the least important variable (10.3%) in the final RF

model for private forests. Overall, topographic variables (TPI

fine, heat load, and slope) were less important than BI, own-

ership, and age, increasing MSE across the Douglas Complex

by 2.6–36.5%. RF models described 31%, 23%, and 25% of

the variability in RdNBR across the entire burned area,

BLMmanaged forests, and private forests, respectively.

Partial dependency plots displayed clear relationships

between RdNBR and predictor variables (Fig. 4). RdNBR

increased exponentially with BI across the entire Douglas

Complex as well as for BLM and private forests separately,

although RdNBR was shifted up by approximately 100

RdNBR on private forests vs. BLM forests for any given BI

value. RdNBR was consistently higher in young forests on

both ownerships. RdNBR declined rapidly on BLM forests

between stand ages of 20 and 80 yr old, and remained

roughly level in older forests. In contrast, RdNBR in private

forests declined linearly with age across its range, although

private lands had few forests greater than 100 yr old. RdNBR

on both BLM and private forests increased with higher eleva-

tions, higher TPI fine, and steeper slope. Heat load was nega-

tively correlated with RdNBR for all ownerships. Pre-fire

biomass was not included in the final RF model for BLM

lands, while, for the entire study and private lands, RdNBR

appeared to decline slightly in forests with intermediate pre-

fire biomass. However, the relationship between RdNBR and

pre-fire biomass is more tenuous on private lands because

they lacked forests with high pre-fire biomass.

Generalize least squares model

BI, age, ownership, TPI fine, and heat load were all signif-

icant predictors of RdNBR in the GLS model (Table 3).

Slope had a suggestive relation with RdNBR (P = 0.0586),

while elevation (P = 0.1769) and pre-fire biomass

(P = 0.2911) were not a significant predictors. Relationships

between predictors and RdNBRwere consistent with partial

dependency plots from RF models, with RdNBR increasing

with BI and TPI fine and declining with age and heat load.

Ownership had a fixed effect of increasing mean RdNBR by

76.36 � 22.11 (mean � SE) in private vs. BLM. Adjusting

for all other predictor variables in the model, predicted

mean RdNBR was higher on private (521.85 � 18.67) vs.

BLM forests (398.87 � 18.23).

DISCUSSION

Quantifying fire severity in the unique checkerboard land-

scape of the O&C Lands, this study disentangled the effects

of forest management, weather, topography, and biomass on

fire severity that are often spatially confounded. We found

daily fire weather was the most important predictor of fire

severity, but ownership, forest age, and topography were also

important. After accounting for fire weather, topography,

stand age, and pre-fire biomass, intensively managed private

industrial forests burned at higher severity than older federal

forests managed by the BLM. Below we discuss how the dif-

ferent variables in our analysis may influence fire severity,

and argue that younger forests with spatially homogenized

continuous fuel arrangements, rather than absolute biomass,

was a significant driver of wildfire severity. The geospatial

data available for our analyses was robust and comprehen-

sive, covering two components of the fire behavior triangle

(i.e., topography, weather), with pre-fire biomass and age

serving as proxies for the third (fuel). However, we recognize

there are limitations to our data and analyses and describe

these below. We conclude by suggesting how our findings

have important implications for forest and fire management

in multi-owner landscapes, while posing important new

questions that arise from our findings.

Fire weather was a strong top-down driver of fire sever-

ity, while bottom-up drivers such as topography and

pre-fire biomass were less important. Across the western

United States, evidence suggests bottom-up drivers such as

topography and vegetation exert greater control on fire

severity than weather, although the quality of weather rep-

resentation confounds this conclusion (Dillon et al. 2011,

Birch et al. 2015). At the same time, it is recognized that

bottom-up drivers of fire severity can be overwhelmed by

top-down climatic and weather conditions when fires burn

during extreme weather conditions (Bradstock et al. 2010,

Thompson and Spies 2010, Dillon et al. 2011). Daily burn

period BI values were used in our analyses, but it is impor-

tant to place fire weather conditions for any single fire

within a larger historical context. We compared these daily

BI values to the historical (1991–2017) summer (1 June–30

September) BI data we calculated from the Calvert RAWS

data used in this study (3,296 total days). Within this his-

torical record, mean burn period BI during the Douglas

Complex for days with fire progression information was

above average (79th percentile), but ranged considerably for

any given day of the fire (15th–100th percentile). Fire sever-

ity was consistently higher on private lands across a range

of fire weather conditions for the majority of days of active

fire spread (Appendix S1: Fig. S3), leading us to conclude

that while fire weather exerted top-down control on fire

severity, local forest conditions that differed between own-

erships remained important, even during extreme fire

weather conditions.

TABLE 3. Coefficients of predictor variables in generalized least
squares model of RdNBR.

Variable Parameter estimate SE t P

Intercept 80.3321 90.4529 0.8881 0.3747

Age �1.0544 0.2132 �4.9452 <0.0001

BI 6.1413 0.7618 8.0614 <0.0001

Ownership 76.3559 22.1111 3.4533 0.0006

Elevation 0.1179 0.0872 1.3512 0.1769

TPI fine 1.2839 0.2509 5.1169 <0.0001

Heat load �150.0098 39.5750 �3.7905 0.0002

Slope 1.1321 0.5979 1.8933 0.0586

Biomass 0.1261 0.1194 1.0562 0.2911
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Variation in pre-fire forest conditions across ownerships

were clearly a significant driver of fire severity, and we

believe they operated at multiple spatial scales. Private

industrial forests were dominated by young trees, which have

thinner bark and lower crown heights, both factors known

to increase fire-induced tree mortality (Ryan and Reinhardt

1988, Dunn and Bailey 2016). At the stand scale, these plan-

tations are high-density single cohorts often on harvest rota-

tions between 30 and 50 yr, resulting in dense and relatively

spatially homogenous fuel structure. In contrast, public for-

ests were dominated by older forests that tend to have

greater variability in both tree size and spatial pattern vs.

plantations (Naficy et al. 2010), arising from variable natu-

ral regeneration (Donato et al. 2011), post-disturbance bio-

logical legacies (Seidl et al. 2014), and developmental

processes in later stages of stand development (Franklin

et al. 2002). Fine-scale spatial patterns of fuels can signifi-

cantly alter fire behavior, and the effects of spatial patterns

on fire behavior may increase with the spatial scale of

heterogeneity (Parsons et al. 2017), which would likely be

the case in O&C Lands due to the large scale checkerboard

spatial pattern of ownership types.

Management-driven changes in fuel spatial patterns at

tree and stand scales could also reconcile differences in

prior studies that have found increases (Odion et al. 2004,

Thompson et al. 2007) and decreases (Prichard and Ken-

nedy 2014) in fire severity with intensive forest manage-

ment. The two studies that observed an increase in fire

severity with intensive forest management were conducted

in the Klamath ecoregion of southwestern Oregon and

northwestern California, the same ecoregion as this study.

In contrast, Prichard and Kennedy (2014) examined the

Tripod Complex in north-central Washington State, where

harvests mostly occurred in low to mid elevation forests

dominated by ponderosa pine, Douglas-fir, lodgepole pine

(Pinus contorta var. latifolia), western larch (Larix occiden-

talis), and Engelmann spruce (Picea engelmannii). These

forests have lower productivity compared to those studied

in the Klamath ecoregion, with more open canopies and

longer time periods to reach canopy closure after harvest,

which likely results in more heterogeneous within stand

fuel spatial patterns. Furthermore, forest clearcut units

were relatively small in the Tripod Complex (mean 53 ha;

Prichard and Kennedy 2014), and while these harvest

units were spatially clustered, they were not large contigu-

ous blocks as found in the O&C Lands. Last, it is unclear

if the harvest units evaluated by Prichard and Kennedy

(2014) experienced the full distribution of fire weather or

topographic conditions compared to unharvested units, as

our study does, which may confound their conclusions

and our understanding of the relative importance of the

factors driving fire behavior and effects.

LIMITATIONS

Our study examined a landscape uniquely suited to disen-

tangling the drivers of wildfire severity and quantifying the

effects of contrasting management activities. Additionally,

we leveraged a robust collection of geospatial data to quan-

tify the components of the fire behavior triangle. However, it

is important to recognize the inherent limitations of our

study. First, this study represents a single fire complex,

instead of a regional collection of fires analyzed to elucidate

broader system behaviors (sensu Dillon et al. 2011, Birch

et al. 2015, Meigs et al. 2016). However, given the chal-

lenges of obtaining high quality fire weather information

and accurate daily fire progression maps for fires that have

occurred in landscapes with contrasting management

regimes, we believe the landscape setting of our study pro-

vides key insights into the effects of management on fire

severity that are not possible in large regional multi-fire

studies. Second, while Landsat imagery is widely used to

estimate forest conditions and fire severity, it has specific

limitations. The GNN maps used in this study to derive pre-

fire biomass and stand age are strongly driven by multi-spec-

tral imagery from the Landsat family of sensors, whose ima-

gery is known to saturate in forests with high leaf area

indices and high biomass (Turner et al. 1999). Third, GNN

maps of forest attributes used in this study were originally

developed for large regional assessments, and as such have

distinct limitations when used for analyses at spatial resolu-

tions finer than the original source data (Bell et al. 2015),

while application of GNN at fine spatial scales can underes-

timate GNN accuracy compared to larger areas commonly

used by land managers (Ohmann et al. 2014). We addressed

potential limitations of using GNN predictions at fine spa-

tial scales in two ways. First, our sample plots are 90-m

squares (3 9 3 30 m pixels) which more closely represents

the area of the inventory plots used as GNN source data

compared to pixel level analyses (Bell et al. 2015). Second,

we visually assessed GNN predictions of live biomass and

stand age within the Douglas Complex in relation to high

resolution digital orthoimagery collected in 2011 by the

USDA National Agriculture Imagery Program. From this

qualitative assessment we concluded that GNN predictions

characterize both between and within ownership variation

in pre-fire biomass and age (Appendix S1: Fig. S4). Fourth

and perhaps most fundamentally important, we relied on

pre-fire biomass and stand age as proxies for fuel, in part

because Landsat and other passive optical sensors have lim-

ited sensitivity to vertical and below-canopy vegetation

structure (Lu 2006). Accurate and spatially complete quanti-

tative information of forest surface and canopy fuels were

not available for the Douglas Complex. More broadly, there

are significant limitations to spatial predictions of forest

structure and fuels using GNN and other methods that rely

on passive optical imagery such as Landsat (Keane et al.

2001, Pierce et al. 2009, Zald et al. 2014), which is why we

relied on the more accurately predicted age and pre-fire bio-

mass variables as proxies. Surface and ladder fuels are the

most important contributors to fire behavior in general

(Agee and Skinner 2005), and surface fuels have been found

to be positively correlated to fire severity in plantations

within the geographic vicinity of the Douglas Complex

(Weatherspoon and Skinner 1995). Yet correlations between

biomass and fuel load can be highly variable due to site con-

ditions and disturbance history (i.e., mature forests with fre-

quent surface fires may have high live biomass but low

surface fuel loads, while dense young forests that have regen-

erated after a stand replacing wildfire will have low live bio-

mass but potentially high surface fuel loads as branches and

snags fall). Therefore, GNN predicted pre-fire biomass may
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represent the total fuel load, but not the available surface

and ladder fuels that have the potential to burn during a

specific fire, and this is supported by the low importance of

pre-fire biomass as a predictor of fire severity in our study.

Furthermore, it is important to recognize that in addition to

total surface and ladder fuels, the spatial continuity of these

fuels strongly influences fire behavior (Rothermel 1972,

Pimont et al. 2011). Fifth, while private industrial and BLM

forests in our study area had very different forest conditions

due to contrasting management regimes, ownership alone

misses management activities (e.g., site preparation, stock-

ing density, competing vegetation control, partial thinning,

etc.) that can influence fuels and fire behavior. Sixth, while

our spatial extrapolation of fire weather correlated well with

daily fire severity and area burned, it did not account for

topographic mediation of weather that can influence fine

scale fire behavior, nor did it examine the underlying

weather patterns such as temperature inversions that are

common to the region and may play a key role in moderat-

ing burning index (Estes et al. 2017). Finally, we were unable

to discern the effects of fire suppression activities and

whether they varied by ownership, since incident documen-

tation of suppression activities are generally not collected or

maintained in a manner consistent with quantitative or

geospatial statistical analyses (Dunn et al. 2017).

MANAGEMENT IMPLICATIONS

Although only one fire complex, the contrasting forest

conditions resulting from different ownerships within the

Douglas Complex are consistent with many mixed-owner-

ship or mixed-use landscapes, such that we believe our

results have implications across a much broader geographic

area. First, it brings into question the conventional view that

fire exclusion in older forests is the dominant driver of fire

severity across landscapes. There is strong scientific agree-

ment that fire suppression has increased the probability of

high severity fire in many fire-prone landscapes (Miller et al.

2009, Calkin et al. 2015, Reilly et al. 2017), and thinning as

well as the reintroduction of fire as an ecosystem process are

critical to reducing fire severity and promoting ecosystem

resilience and adaptive capacity (Agee and Skinner 2005,

Raymond and Peterson 2005, Earles et al. 2014, Krofcheck

et al. 2017). However, in the landscape we studied, intensive

plantation forestry appears to have a greater impact on fire

severity than decades of fire exclusion. Second, higher fire

severity in plantations potentially flips the perceived risk

and hazard in multi-owner landscapes, because higher sever-

ity fire on intensively managed private lands implies they are

the greater source of risk than older forests on federal lands.

These older forests likely now experience higher fire severity

than historically due to decades of fire exclusion, yet in com-

parison to intensively managed plantations, the effects of

decades of fire exclusion in older forests appear to be less

important than increased severity in young intensively man-

aged plantations on private industrial lands.

Furthermore, our findings suggest challenges and opportu-

nities for managing intensive plantations in ways that reduce

potential fire severity. Increasing the age (and therefore size)

of trees and promoting spatial heterogeneity of stands and

fuels is a likely means to reducing fire severity, as are fuel

reduction treatments in plantations (Crecente-Campo et al.

2009, Kobziar et al. 2009, Reiner et al. 2009). The extent and

spatial arrangement of fuel reduction treatments can be an

important consideration in their efficacy at reducing fire

severity at landscape scales (Finney et al. 2007, Krofcheck

et al. 2017). However, optimal extent and landscape patterns

of fuels reduction treatments can be hampered by a wide

range of ecological, economic, and administrative constraints

(Collins et al. 2010, North et al. 2015a, Barros et al. 2017).

In the past, pre-commercial and commercial thinning of

plantations (a potential fuel treatment) in the Pacific North-

west were common, economically beneficial management

activities that improved tree growth rates and size, but these

practices have become less common with improved reforesta-

tion success, alternative vegetation control techniques, and

shorter harvest rotations (Talbert and Marshall 2005). This

suggests there may be strong economic limitations to

increased rotation ages and non-commercial thinning in

young intensive plantation forests. More broadly, the devel-

opment of large-scale forest management and conservation

strategies can face legal and equitability challenges in multi-

owner landscapes given existing laws constraining planning

among private organizations (Thompson et al. 2004, 2006).

We believe two major questions arise from our findings

that are important to fire management in multi-owner land-

scapes, especially those with contrasting management objec-

tives. Plantations burned at higher severity, and this implies

they are a higher source of risk to adjacent forest owner-

ships. However, a more explicit quantification of fire severity

and susceptibility is needed to understand how risk is spa-

tially transmitted across ownership types under a variety of

environmental conditions. Second, we suggest the need for

alternative management strategies in plantations to reduce

fire severity at stand and landscape scales. However, the eco-

nomic viability of such alternative management regimes

remains poorly understood. Optimization models integrat-

ing spatial allocation of fuel treatments and fire behavior

with economic models of forest harvest and operations

could be used to determine if alternative management activi-

ties in plantations are economically viable. If alternative

management activities are not economically viable, but wild-

fire risk reduction is an important objective on lands adja-

cent to industrial forestlands, strategic land purchases or

transfers between ownership types may be required to

achieve landscape level goals. This may be particularly

important given the previously stated legal and equitability

challenges in multi-owner landscapes. Regardless of the

landscape-level objectives and constraints, it is clear that

cooperation among stakeholders will be necessary in multi-

ownership landscapes if wildfire risk reduction, timber har-

vesting, and conservation objectives remain dominant yet

sometimes conflicting objectives for these landscapes.
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