The Sciences That Matter in Forest Policy: Will Fire Science Be the New Winner?

Last fall I was filling out a form and realized that I joined the Society of American Foresters in 1974.. which means it’s only two years to fifty.  There are many others in the TSW community from the same and earlier time periods.  It seems to me that taking the long view (at a foot a year, seedlings I planted are now fifty feet tall) might lead to seeing trends that are otherwise not obvious.

To that end, I’d like to talk about The Sciences That Matter in Policy and How They Think About Things.  When I took forest policy as an undergrad at Berkeley, forest policy seemed to be mostly in the hands of the field of economics. 

At the time, I thought forest policy was the most boring thing imaginable (the 1872 Mining Law? really?), but here I am.

Later it was determined that the ESA was a good policy tool by environmental groups, as depicted in George Hoberg’s work. So wildlife sciences became key, as for example, Chief Thomas, the Gang of Four, and so on. Yes, there are qualities of science silverback-hood* that are larger than original discipline, but I’m talking about general trends.

Then somewhere along the lines, folks (I think veg ecologists) came up with the course/fine filter approach.  Which wasn’t exactly science itself, but seemingly a common-sensical idea by scientists.  If you get have the veg as in the past, you should have the species as in the past.  So if you manage that way (course filter) you’ll have fewer endangered species that require protection beyond that. Somehow that transitioned to HRV..as I said during the 2001 Planning Rule discussion.. a full employment program for vegetation ecologists.

As geneticist, I’ve never been a fan of HRV..just pragmatically, it’s too difficult to figure out how things would have been if Europeans hadn’t killed off Native Americans. Or possibly enshrining some post-Native American past as the way things ought to be.  In evolutionary biology, change through time in response to changing conditions IS the natural process.

And I think that’s to some degree behind the concept of “restoration”; if that abstraction is taken with it’s usual English meaning.  And so it has been. But sometimes “restoration” means “resilience” .. and sometimes it’s a clear concept as in the practices of watershed restoration.

But prioritizing PODs is a completely different kettle of scientific and practitioner fish.  The goal is not to restore, or even make forests climate-resilient. The goal of PODS is to help suppression people manage wildfires. It’s pretty clear who the experts are. Fire suppression folks.

If we choose to manage PODs, they will be on the basis of 1) what practicing fire suppression folks think they need including concerns of fish, wildlife, watershed, recreation and so on, with some degree of help from 2) fire modelers who include climate considerations. 

So we could be changing from vegetation ecologists being the key policy-relevant science, to fire science being the key policy-relevant science. But being a fire scientist is different from having on-the-ground fire experience. In my experience, this is a wider practitioner to academic gap than in silviculture or wildlife or watershed. So in this case, practitioner, Indigenous, and local knowledge will also be brought into the mix in specific places.

The Forest Service tried to do that with Strategic Fireshed Assessments in California as described in this post. And Don Yasuda’s presentation about “why it didn’t happen”.

Note, I’m just talking location and management of PODs here, not other efforts to promote resilience of forests to fires, for which vegetation ecology, fire science, watersheds and wildlife sciences, and climate science would also be involved. I think it might be hard for some to pass the torch of power gracefully, both with regard to different science disciplines, and perhaps most difficult, to admit that suppression practitioners and Indigenous folks have a key role to play. It’s possible, that for these projects, that the research/academic “science” card will no longer be trump.

* science silverback-hood.. I’ll define as “being a person who gets asked for their opinions in policies beyond the relatively narrow confines of their own discipline.” I call it silverback-hood because in my experience it’s been mostly males, at least in forest policy.
 

Practice of Science Friday: Mind the Model/Adaptation Gap

Scientist Neil Carter of Michigan State University sets a motion-activated camera with a colleague in Nepal’s Chitwan National Park. Tigers in southern Nepal appear to be changing their habits so they can operate under cover of darkness and avoid coming into contact with humans, scientists said.

There seems to be a disciplinary adaptation gap between some climate scientists and “biodiversity” scientists on the one hand, and the disciplines involved in adaptation…fire science, plants, wildlife biologists and so on, on the other hand.  One of the gaps is that organisms adapt.  Critters and plants adapt, human beings adapt and we jointly adapt to each other.

There is the traditional genetic form of adaptation within species, and there are all kinds of adaptations beyond classical genetics.. behavioral, cultural, epigenetic.  And since these adaptations can’t be modeled (since most of them are unknown) to climate and biodiversity modelers, they don’t exist.  And yet.. in real life, and to certain disciplines, they do exist and are important.

Not to speak of humans.. so we have gaps like reading about crop improvement via new techniques like CRISPR, while at the same time climate modelers are predicting wheat yields in 2070.  GAP! Yet among science institutions, it doesn’t seem to be anyone’s job to notice gaps and attempt to fill them.  I think because while the CRISPR people would easily say “hey we have no clue what’s going to happen by then”, climate scientists seem to spend a great deal of time making predictions and mostly get published if the outcomes are bad… seemingly completely regardless of any characterization of the many uncertainties at the level the CRISPR people and farmers deal with.

Here’s an example of the kind of study I’m talking about..with regard to biodiversity predictions:

A new study by University of Arizona researchers presents detailed estimates of global extinction from climate change by 2070. By combining information on recent extinctions from climate change, rates of species movement and different projections of future climate, they estimate that one in three species of plants and animals may face extinction.

So here are a few papers that talk about wildlife adaptation:

First, mammals are becoming more active at night to avoid us. Here’s a link to an article by Michael Page, and here’s a link to the Science study.

Gaynor and her colleagues noticed animals were becoming more active at night to avoid human disturbances. They have now done a meta-analysis of 76 studies of 62 mammals all around the world. Almost all are shifting to the night to avoid us…
On the other hand, the shift is helping animals survive alongside humans. In Chitwan in Nepal, lots of tigers are able to live near people by being more active at night.

In this sense, the shift to the night may be good. “It’s a way to share space on an increasingly crowded planet,” says Gaynor. “We take the day and they take the night.” Thanks to their nocturnal ancestors, many mammals still have plenty of the characteristics needed to be more active at night, she says. And they are likely to be evolving to be even better at it.

“I would expect that this is an incredibly strong selective force,” says Kate Jones of University College London, who has shown that mammals only became active during the daytime after dinosaurs vanished.

Second, we’re finding out that habitats where critters are currently found might not be the only ones they can live in, maybe not even their preferred. This is in New Scientist by Isabelle Groc. Hopefully, there isn’t a paywall, it’s from 2018.

The story of California’s sea otters is not a one-off. Earlier this year, Silliman and his colleagues revealed a wider trend in a paper aptly titled “Are the ghosts of nature’s past haunting ecology today?“. As a result of conservation efforts, a variety of predators are reappearing in ecosystems they were pushed out of by hunting and development. “It is an exciting time for ecologists,” says Carswell, “because these species are coming back to these ecosystems from which they have been absent for many human generations and they are putting their house back in order.”

Mountain lions are another example. Unsurprisingly, we tend to associate them with mountains. But historical records show that in Patagonia they once lived in open grasslands. As sheep farming became established in South America, they were persecuted – along with their prey, a kind of llama called a guanaco. As a result, mountain lions survived only in the remote Andes away from humans. But in the past 20 years, sheep ranching has declined. “We started to see a change,” says Mark Elbroch from conservation society Panthera. “The mountain lions that had been removed from the open grassland began to come back out of the mountains at the same time as the guanaco was beginning to move back into the grassland.”

Third, critters are moving to places where they didn’t formerly live as far as we know. In this case, apparently without direct human assistance. This story is from Wudan Yan in High Country News (also 2018)

Otters were once unheard of in the Beartooths. In fact, there’s no evidence they’re native to this high alpine environment at all; their arrival appears to be part of the sweeping changes humans have brought to the plateau. In the 1960s, zoologists Donald Pattie and Nicolaas Verbeek spent years surveying the various mammals found in the Beartooths. They found creatures as small as dwarf shrews and as large as grizzly bears and mountain goats, but no otters. Continued but sporadic surveys done by field technicians and researchers at the Yellowstone Ecological Research Center in the 1990s yielded no sign of river otters, either. But for the last decade or so, there have been a few anecdotal reports from Cross, his colleagues, and some of the locals who frequent the plateau.

This of course raises philosophical issues as on this Yellowstone Ecological Research Center website

Are they “invasive species” in this alpine environment, impacting native carnivores like red foxes and American martens, or adaptive survivors seeking a climate refugium (not to mention food bonanza) at higher elevations?

I’m not suggesting we blow through wildlife habitat and ignore their needs. But when we hear predictions about the future, especially the distant future, even by scientists, I think we need to acknowledge that no one actually knows what will happen. And the people working at the interface of people and wildlife are actually the most knowledgeable about them, and how to work toward our continuing coexistence.

Snowless Western Mountains and Co-Design and Co-Production of Useful Scientific Knowledge

This paper was excerpted by the WaPo here.

But a new study projects that in about 35 to 60 years, mountainous states may be nearly snowless for years at a time if greenhouse gas emissions continue unchecked and climate change does not slow. The resulting lack of water would be “potentially catastrophic,” according to the study’s authors.

It’s a really interesting paper with lots of great graphics and explanations of sources of uncertainty. For RCP watchers, it’s a review paper and there is some 8.5 and some 4.5 in the studies used, with a chart in the supplemental information page.
My favorite part was about planning, though. The numbers are citations.

Thus, at the same time that science evolves to increase predictive understanding of the mechanisms of hydroclimatic change, management practice must evolve to accommodate uncertainty regarding the changing patterns of current and future hydrologic variability. Developing a robust strategy and selecting investment options that balance competing societal objectives and multisectoral interactions (such as the interaction among water and energy 186 or water and carbon 207 reduction goals) requires new approaches to integrate water resource planning. Frameworks and planning methods for decision- making under deep uncertainty that acknowledge and accommodate imperfect knowledge regarding the probabilistic range of possible future conditions such as decision scaling 241, robust decision- making, dynamic adaptation pathways 242 and scenario planning can identify scientifically informed adaptive strategies that leverage best available science without overstating its confidence 243.

For instance, the United States Bureau of Reclamation and water management agencies within the Colorado River Basin engaged in a robust decision- making study that identified a range of potential future climate conditions under which water delivery obligations would be vulnerable. Portfolios of adaptation strategies aimed at demand reduction (including agricultural, municipal and industrial conservation) and supply augmentation (including reuse, desalination and water import) were evaluated for their ability to alleviate these vulnerabilities and for their trade- offs in cost, yield, technical feasibility, legal risk and other criteria. The portfolios generally increase system robustness but have a wide range of implementation costs, especially under the declining supply conditions, and vary between the Upper Basin and the Lower Basin 244. Making science usable for decision- making requires strong trust between the parties 245. This trust often develops over deliberate, long- term collaboration 246, with mutual understanding of the science, models and tools being discussed and demonstration of the credibility, saliency and legitimacy of the new approach(es) 247. Institutional, technical and financial capacity to implement these approaches must also be overcome 233. Scientists must also recognize that practitioners are often directly responsible, sometimes even personally liable, for the outcomes of decisions made, which makes them hesitant in the application of new climate science 236, especially if perceived as not fitting with existing knowledge or policy goals 233,248.A path forward can be made by including Earth scientists, infrastructure experts, decision scientists, water management practitioners and community stakeholders, in a collaborative, iterative process of scientific knowledge creation through a co- production framework 41,42,249,250. This process helps to ensure that new science is suited to challenges at hand and can provide meaningful input into decision- making processes.

My bold.

I picked out some interesting-looking citations below:

Arnott, J. C., Mach, K. J. & Wong- Parodi, G. Editorial overview: The science of actionable knowledge. Curr. Opin. Environ. Sustain. 42, A1–A5 (2020).246.
Meadow, A. M. etal. Moving toward the deliberate coproduction of climate science knowledge. Weather Clim. Soc. 7, 179–191 (2015).247.
Cash, D. W. etal. Knowledge systems for sustainable development. Proc. Natl Acad. Sci. USA 100, 8086–8091 (2003).248.
Dilling, L. & Lemos, M. C. Creating usable science: opportunities and constraints for climate knowledge use and their implications for science policy. Glob. Environ. Change 21, 680–689 (2011).249. Lemos, M. C. etal. To co- produce or not to co- produce. Nat. Sustain. 1, 722–724 (2018).250.
Cash, D. etal. Salience, credibility, legitimacy and boundaries: linking research, assessment and decision making. SSRN https://doi.org/10.2139/ssrn.372280 (2002).251. Cash, D. W., Borck, J. C. & Patt, A. G. Countering the loading- dock approach to linking science and decision making: comparative analysis of El Niño/Southern Oscillation (ENSO) forecasting systems. Sci. Technol. Hum. Values 31, 465–494 (2006).252.
Goodrich, K. A. etal. Who are boundary spanners and how can we support them in making knowledge more actionable in sustainability fields? Curr. Opin. Environ. Sustain. 42, 45–51 (2020).

Science is clear: Catastrophic wildfire requires forest management

Science is clear: Catastrophic wildfire requires forest management” was written by Steve Ellis, Chair of the National Association of Forest Service Retirees (NAFSR), who is a former U.S. Forest Service Forest Supervisor and retired Bureau of Land Management Deputy Director for Operations—the senior career position in that agency’s Washington, D.C., headquarters.

I have extracted a few snippets (Emphasis added) from the above article published by the NAFSR:

1) Last year was a historically destructive wildfire season. While we haven’t yet seen the end of 2021, nationally 64 large fires have burned over 3 million acres. The economic damage caused by wildfire in 2020 is estimated at $150 billion. The loss of communities, loss of life, impacts on health, and untold environmental damage to our watersheds—not to mention the pumping of climate-changing carbon into the atmosphere—are devastating. This continuing disaster needs to be addressed like the catastrophe it is.

2) We are the National Association of Forest Service Retirees (NAFSR), an organization of dedicated natural resource professionals—field practitioners, firefighters, and scientists—with thousands of years of on the ground experience. Our membership lives in every state of the nation. We are dedicated to sustaining healthy National Forests and National Grasslands, the lands managed by the U.S. Forest Service, to provide clean water, quality outdoor recreation, wildlife and fish habitat, and carbon sequestration, and to be more resilient to catastrophic wildfire as our climate changes.

3) As some of us here on the Smokey Wire have been explaining for years, the NAFSR very clearly and succinctly states:
Small treatment areas, scattered “random acts of restoration” across the landscape, are not large enough to make a meaningful difference. Decades of field observations and peer reviewed research both document the effectiveness of strategic landscape fuel treatments and support the pressing need to do more. The cost of necessary treatments is a fraction of the wildfire damage such treatments can prevent. Today’s wildfires in overstocked forests burn so hot and on such vast acreages that reforestation becomes difficult or next to impossible in some areas. Soil damage and erosion become extreme. Watersheds which supply vital domestic, industrial, and agricultural water are damaged or destroyed.

4) This summer, America watched with great apprehension as the Caldor Fire approached South Lake Tahoe. In a community briefing, wildfire incident commander Rocky Oplinger described how active management of forestlands assisted firefighters. “When the fire spotted above Meyers, it reached a fuels treatment that helped reduce flame lengths from 150 feet to 15 feet, enabling firefighters to mount a direct attack and protect homes,” The Los Angeles Times quoted him.

5) And in a Sacramento Bee interview in which fire researcher Scott Stephens was asked how much consensus there is among fire scientists that fuels treatments do help, he answered “I’d say at least 99%. I’ll be honest with you, it’s that strong; it’s that strong. There’s at least 99% certainty that treated areas do moderate fire behavior. You will always have the ignition potential, but the fires will be much easier to manage.” I (Steve Ellis) don’t know if it’s 99% or not, but a wildfire commander with decades of experience recently told me this figure would be at least 90%. What is important here is that there is broad agreement among professionals that properly treated landscapes do moderate fire behavior.

6) During my career (Steve Ellis), I have personally witnessed fire dropping from tree crowns to the ground when it hit a thinned forest. So have many NAFSR members. This is an issue where scientist and practitioners agree. More strategic landscape treatments are necessary to help avoid increasingly disastrous wildfires. So, the next time you read or hear someone say that thinning and prescribed fire in the forest does not work, remember that nothing can be further from the truth.

Science Friday: Are Trees Sentient? New Scientist Interview with Susan Simard

This is a great interview and explains much more than a recent HCN piece, so I’m posting it in its entirety for those without an NS subscription. If you want to learn about the current state of plant cooperation from a more materialistic approach, try this review paper by Dudley in 2015.

******************************************

Suzanne Simard was raised in the Monashee mountains in British Columbia, Canada. Her research, beginning with the discovery of the wood wide web, has transformed our understanding of forests. She is now a professor of forest ecology at the University of British Columbia.

FEW scientists make much impact with their PhD thesis, but, in 1997, Suzanne Simard did just that. She had discovered that forest trees share and trade food via fungal networks that connect their roots. Her research on “the wood wide web” made the cover of Nature. What was then a challenge to orthodox ideas is today widely accepted.

But Simard and her colleagues continue to challenge our preconceptions of how plants interact. Among other things, their research shows that the wood wide web is like a brain and can communicate information throughout the entire forest, that trees recognise their offspring and nurture them and that lessons learned from past experiences can be transmitted from old trees to young ones.

Simard calls herself a “forest detective”. Her childhood was spent in the woods of British Columbia, Canada, where her family had made a living as foresters for generations. As a young woman, she joined the family profession, but soon realised that modern forestry practices were threatening the survival of the ecosystem she loved. She knew that, when logged with a lighter touch, forests can heal themselves, and she set out to discover how they are so naturally resilient. Along the way, her concern for the future of forests sparked an intense curiosity about what makes them tick.

Simard is now a professor in the faculty of forestry at the University of British Columbia. Her new book, Finding the Mother Tree: Uncovering the wisdom and intelligence of the forest, tells how – like trees in a forest – her life and research are intricately intertwined.

Rowan Hooper: How did your discovery of the wood wide web change the received wisdom about forests?

Suzanne Simard: The key finding is that trees are in a connected society, and that it’s a physical network and that they trade and collaborate and interact in really sophisticated ways as a cohesive, holistic society. From my training, and from the way we viewed forests or any plant community prior to that – at least in Western thinking – we didn’t see plants as collaborative and linking. We thought that plants are solitary and compete to acquire as many resources as they can to increase their fitness. That idea isn’t necessarily wrong. It’s just that the way plants grow isn’t simply by competition. They also collaborate, and there are synergies.

The wood wide web consists of fungi as well as tree roots. What are fungi in these mycorrhizal networks like?

There are many different species of fungi, and they have niches and different physical and physiological structures. Some are really big pipelines. Some are little – tiny, fine threads. They all have different roles in extracting resources and moving things around. If you change the composition of that fungal community, you actually change how nutrients and carbon and water are moved around.

At first, some biologists were sceptical about the wood wide web. How did you convince them?

It was so tiring. I had to keep showing that these networks exist, and that plants are obligate mutualists with fungi; this means they need them to gather nutrients and water from the soil, especially in a stressful environment. That is what all seeds encounter when they are trying to germinate. The environment is a stressful place because seeds are small, there are predators, competitors – there’s all sorts going on. And this little boost, the boost provided by the fungi, even though it’s hard to measure, can make the difference between survival or death.

 

New Scientist Default Image

Mature trees, such as this oak, hold information accrued over centuries

Adam Burton/naturepl.com

 

This doesn’t challenge natural selection at all. Darwin wrote about the importance of collaboration in communities. It’s just that it didn’t gain traction like the idea of competition did. Natural selection results from more than competition. It involves a lot of different interactions and relationships between species and with the environment.

Richard Powers fictionalised your struggle in his arboreal novel The OverstoryDid his account ring true?

Powers did such a great job. He was able to construct this character, and I thought that he really captured it well. Even though Patricia Westerford studied above-ground communication and I was studying below ground, that didn’t really matter. All the personal things about the difficulties in advancing her ideas and getting her work out there, I encountered something in parallel.

The pushback against your work reminds me of the reaction James Lovelock’s Gaia hypothesis received. Do you agree?

I think it comes back to the fact that there had been this separation of humanity from nature, mind from body, spirit from intellect, and that we had moved away from this more holistic, spiritual way of seeing the world. Lovelock’s idea of the biosphere as a self-regulating system was antithetical to the view that we could dissect the world and understand all the parts in a deterministic way. It was similar with Lynn Margulis and her endosymbiotic theory, showing how eukaryotic cells evolved from the engulfment and collaboration between different prokaryotic cells. She was ridiculed and her papers were rejected – but now her ideas are mainstream.

You have continued to make remarkable discoveries. How did you find out that trees recognise their family members?

I was working on mycorrhizal networks, seeing if the networks were improving regeneration of seedlings around trees. And it seemed like the next logical question was: well, would the networks be able to favour seedlings that were coming from the mother trees, the parent trees? I worked with Susan Dudley at McMaster University [in Canada] and we have found that kin recognition occurs in conifers. It’s happening through mycorrhizal networks, and it’s an important phenomenon in structuring these forest communities.

We were able to trace the carbon transferred between trees. We would label a mother or a sibling plant [by feeding it with carbon dioxide that contained a radioactive form of carbon] and then we would see that the carbon would transmit to a kin seedling, but not to a stranger planted nearby. I don’t know how they recognise their kin, but I assume it’s by chemicals because when we allow seedlings to connect with the mother trees or with their siblings, through these mycorrhizal networks, we get responses much more dramatically than if they connect with non-kin. It changes the rooting behaviour. It changes their chemistry, the nutrition of the plants and the response to disease.

All this reminds me of the “mother tree” in Avatar, a film featuring an alien species that can tap into something like a forest-wide natural network. Were you involved with that?

It’s funny, when the movie came out, I got a call from someone who said that [director] James Cameron based his idea of the film’s “hometree” and the Na’vi people connecting to the network on my work. I was like: “Oh, really? That’s cool. I’m glad somebody picked it up.” And then when I went to see the movie, I’m just like: “Oh my god, of course he read my papers.” Interestingly enough, James Cameron is making sequels to Avatar right now, and they’re making a documentary on the science behind Avatar. And now they’ve contacted me.

Your latest findings are even more mind-blowing. Tell us what you discovered when you mapped the nodes and connections in mycorrhizal networks.

The architecture of those networks follows a biological neural network. In your brain, neurotransmitters have got to move from different lobes in order for your thought patterns to emerge. So they have evolved to do that efficiently.

It turns out, the underground network in the forest is designed the same way. I think it’s for efficient transfer of information and resources for the health of the full community. Not only that, but the chemicals that are moving in those networks include glutamate, which is one of the dominant neurotransmitters in brains.

Is it too much to suggest that, like in a brain, there is intelligence in this network, even wisdom?

From a purely biological, physical analysis, it looked like it had the hallmarks of intelligence. Not just the communication of information and changes in behaviour as a result, but just the pure, evolved, biological chemistry and the shape of the networks themselves spoke to the idea that they were wired and designed for wisdom.

If you look at the sophisticated interactions between plants – and some of that happens through the networks – their ability to respond and change their behaviours according to this information all speaks of wisdom to me.

What about awareness? Are trees aware of us?

Plants are attuned to any kind of disturbance or injury, and we can measure their biochemical responses to that. We know that certain biochemical pathways are triggered to develop these cascades of chemicals that are responses to stresses and disturbances, like chewing by herbivores. And if they are so attuned to small injuries like that, why wouldn’t they be attuned to us? We’re the dominant disturbance agent in forests. We cut down trees. We girdle them. We tap them.

 

New Scientist Default Image

Science points to ways in which we can improve forestry management

Jaap Arriens/NurPhoto via Getty Images

 

If I injure trees so much that they start to die, they start sending their carbon through their roots to their neighbours. They are responsive to us. We’ve proven it by doing our experiments. People go: “Oh, that’s kind of scary”. But why wouldn’t plants be aware of people? They are aware of everything else.

That might surprise some people in the West, but not the Indigenous communities in North America with which you collaborate. How do they see the forest?

The work I do about trees being connected and nurturing each other represents a world view that has been known for thousands of years by the Aboriginal people of North America. But there’s been this long history of ignoring them and ridiculing them and destroying them. Maybe we won’t listen to Aboriginal people because we think it’s mystical and airy-fairy and spiritual, and that we really only want science, but I’ve been able to demonstrate some of these holistic connections with science. We’re doing the same things. We have the same findings and world views. So let’s work as a team.

How has your upbringing shaped your own views?

I grew up in the forest, seeing how it was this diverse, entwined, very complex place where all these creatures live together. The trees, the roots overlapping, the many species growing together, the lush, structured forest – that was what I knew. My family are foresters, and when I started getting involved as a forester, there was a big shift going on in industrial practices, with clear-cutting [felling all the trees in an area]. Intuitively, it didn’t make sense to me.

Have things got better now that we know about the connections in forests?

We know a ton about how to make it better, and there are definitely people who want to make it better. There’s a lot of pressure to improve practices, and we even have certification of our forests to show that we do sustainable forestry practices. But look at the big picture in British Columbia. We’ve turned, in my short lifetime, from a province of old-growth forest to a province full of clear cuts. Even the iconic old-growth forests with the big cedars and hemlocks and spruces on the west coast, those towering forests, only about 3 per cent are left. We’ve cut everything down, and it’s not stopping.

So, no, it hasn’t improved. In some ways, it’s got a lot worse. And I think that this is manifested in these big indicators, which are climate change and loss of biodiversity. A lot of that comes from forestry practices.

Should there be some sort of charter for trees, akin to animal rights or human rights?

That’s a great idea, yes. We have the United Nations Convention on Conservation of Biodiversity and we’ve got the Paris Agreement on climate change. Conservation of forests is crucial to both of those things. So we have treaties and yet we don’t honour them. The iconic old-growth forests are hugely diverse and store megatons of carbon. Those forests aren’t very well protected and they aren’t protected far into the future. When we push the system to collapse – which is what we’re doing if we lose those old-growth forests – what are we going to do? They are the places where that genetic diversity lives, that we are going to depend on in order to get us through climate change.

What would you like people to do after hearing about your work or reading your book?

I want them to want to go to the forest. That’s the most simple, basic thing. Just go and be with it and love it and care for it and talk to it and show your respect for it. I think that is the foundation of changing our behaviours. Ultimately, this will translate into action. Not everybody will act, of course, and not everybody has to act. But we need that change to happen, and it starts with connecting back with nature.

The Mother Tree Project

 

New Scientist Default Image

The roots of trees like this red cedar form an underground network with fungi to create a kind of forestwide brain

Cheryl-Samantha Owen/naturepl.com

 

Every forest has its share of mature, majestic trees. Forest ecologist Suzanne Simard at the University of British Columbia, Canada, calls these “mother trees”. She and her colleagues have found that they are crucial to the well-being of the entire forest community. They are the hubs of communication, protection and sentience, they nurture their own offspring and they provide information to help generations of trees survive. This has crucial implications for the way we manage forests, which is why, in 2016, Simard launched The Mother Tree Project to explore the role that mother trees play in forest regeneration.

“It’s the biggest project I’ve ever done,” says Simard. It involves 24 Douglas fir forests stretching across nine climate regions in British Columbia. Each forest is logged using five different harvesting treatments, ranging from felling all the trees in an area to keeping large patches of trees with mother trees present. The team monitors and measures how the forest responds and regenerates by collecting information before and after logging about things like carbon storage, biodiversity and productivity.

Research is ongoing, but there have already been some compelling results. “We’ve found that the more mother trees we leave, the more diverse and abundant the natural regeneration is,” says Simard. Her team also has good evidence that mother trees protect seedlings, especially when conditions get tough, such as when there is a frost or a particularly hot, dry day. By comparing results in different climate regions, the researchers aim to identify more sustainable ways to manage forests in the face of climate change.

“I wanted to create a project that would show people that you can do things in a different way and design forest practices around the idea that the forest is a connected, nurturing, healing place,” says Simard.

********************************

I’ve spend most of my time looking at regeneration in ponderosa pine forests. It seems to me that the more large trees, the more seed there is because large trees produce large amounts of seed (but there also needs to be openings).  And in dry areas, large trees can produce shade that keeps the seedlings and soil from drying up.  So my own experience with pine is about the same as in the Mother Tree above.  In fact, I remember the Keen classification system which was popular in certain ponderosa pine areas when I started working (in the early 1980’s) when even-aged management was catching hold.

The size of crown and abundance of foliage are probably the best outward indicators of the relative vigor of different trees of a given age.
Therefore, each age class was further subdivided into four sub-groups based upon relative crown vigor. These are designated by letters .d to D.
The position of the tree in the stand in the following descriptions is for uncut stands. The positions may be entirely changed in a cutover stand; however, the other criteria of vigor are readily recognized.
.d. Full vigorous crowns with a length of 55 percent or more of the total height and of average width or wider; foliage usually dense; needles long and dark green; position of tree isolated or dominant (rarely codominant).

This paper by Hornibrook about trees in the Black Hills is from 1939 in the Journal of Forestry. It seems perhaps we have come full cycle.  OTOH, I don’t think I’ve seen this in lodgepole.